ESTUDO E IMPLEMENTAÇÃO DE MÉTODOS NUMÉRICOS PARA A SOLUÇÃO DE EQUAÇÕES DIFERENCIAIS ORDINÁRIAS.

Sinopse
O presente estudo e implementação de métodos numéricos para a solução de equações diferenciais ordinárias(E.D.O) tem como objetivo encontrar em um problema de valor inicial,através de procedimentos numéricos soluções aproximadas da solução exata,em um dado intervalo real,de maneira que a função em estudo seja contínua no mesmo intervalo, cuja solução analítica em muitos casos se torna difícil ou inviável.Neste propósito,trataremos dos métodos de passo simples , como o método de Euler,o método dos trêstermos da série de Taylor e método de Runge-Kutta, assim como o método de passos múltiplos, como o método de Adams e suas fórmulas inversas de diferenciação, como também o controle de erros e estabilidade destes métodos e a utilização dos mesmos em sistemasde equações de primeira ordem. Nosso objeto de implementação será a linguagem de programação C que nos permite interagir com alguns dos métodos em questão. Palavras-chave: E.D.O, Métodos numéricos, Euler, Runge-Kutta
Autor:
Giovanni Almeida Marques
Formato:
pdf
Tamanho:
365 KB
Enviado por:
Giovanni Almeida Marques
Enviado em:
30/05/2016
Classificação:
seguro
Copyright © 2016. Todos os direitos reservados.
Você não pode copiar, exibir, distribuir, executar, criar obras derivadas nem fazer uso comercial desta obra sem a devida permissão do autor.