a ideia de simetria
Resumo
Resumo
Este artigo pretende entender a importância do conceito de simetria na evolução da Física disciplina que teve início como ciência autônoma com Galileu que foi o primeiro a definir o seu papel, de modo dar-lhe rigor conceitual. Durante séculos, os objetos e os conceitos da filosofia e da geometria euclidiana foram considerados como os que melhor descreviam o mundo em que vivemos. Entretanto com a descoberta da geometria não Euclidiana, que revelaram novos objetos que representam certos fenômenos do Universo, muitos teorias foram revistas e até modificadas, com instrumentos trazidos pelos matemáticos com Poicaré, Euler, Hilbert, Gauss, Godel, e tantos outros e com as descobertas da Lei da Termodinâmica, da relatividade, Supersimetria, fez-se necessário entre os físicos e matemáticos pensar outras relações entre as interações verificadas no âmbito da matéria e das forças que atuam sobre ela e a simetria; e ainda a possibilidade de se estabelecer relações plausíveis entre o fenômeno observado e a sua reflexão ou recorrência, afim de oferecer modelos que possibilitem aos cientistas estabelecer regularidades e assim postular leis gerais.
1. Galileu e o Método Científico
Galileu Galilei (1564-1642) foi o fundador da ciência moderna, deu grande contribuição ao método científico quando estabeleceu parâmetros para a feitura da ciência. A valorização da observação dos fenômenos e a experimentação para a posterior verificação ainda hoje é condição sine qua non para se fazer ciência. Outra contribuição importante de Galileu é a estabelecer critérios e escalas para mensurar dado experimento como bem observa Mark A. Peterson :
“ (...) a sua obra Duas Novas Ciências começa com o tema do escalonamento, as observações de Galileu sobre o dimensionamento, em geral, são engenhosos e elegantes(...). Essas idéias são fundamentais na física, e são ainda introduzidas na parte introdutória dos livros de Física sob o título de analise dimensional (...) “
Galileu irá acreditava ser a Física a geometria e a escala de invariância os teoremas da matemática.
2. Definindo simetria
A simetria é um dos conceitos mais fundamentais das ciências ela tem aplicações práticas, seja na arquitetura, na música, na poesia,e sobretudo na natureza, é como se fosse um espelho que reflete exatamente nas mesmas proporções um objeto, simetria é na verdade um conceito que está muito ligada a ordem e a um certo conceito de absoluto já que nada poderia ser concebido além das proporções simétricas. Esta regularidade permite a invariabilidade das leis que presidem os movimentos dos corpos.
Em linguagem matemática, simetria é uma operação geométrica que deixa um objeto inalterado.
Nas artes, nas ciências, sobretudo na matemática euclidiana, como em Galileu percebe-se um desejo de interpretar o movimento, como sendo algo que se desdobra numa escala.
É interessante notar que no segundo dia do Discorsi. Galileu discorre sobre a impossibilidade de que na natureza aja simetria sob transformação de escala, no entanto nem toda simetria se manifestam diretamente na natureza.
Ou seja: as transformações de Galileu que são demonstradas como:
X´ = x - Vt ;
T ’ = t
A
22de maneira mais qualificada da seguinte forma:
3.Simetria e referencial inercial
Vale citar o seguinte trecho do livro “The Character of Physical Law” de Richard Feynman:
“Galileo discovered a great principle called the principle of inertia, which is this: that if an object has nothing acting on it and is going along at a certain velocity in a straight line it will go at the same velocity in exactly the same straight line for ever...”
Galileu descobriu que não existe um padrão absoluto de repouso ou de movimento com velocidade constante (princípio de invariância sob uma mudança de referencial inercial.
Já formulação completa das leis físicas do movimento foi apresentada por Isaac Newton, em 1687, em Mathematical Principles of Natural Philosophy. Essas leis válidas para quaisquer observadores possuindo movimento relativo com velocidade constante, esses observadores utilizam referenciais inerciais.
4.Outras simetrias
Na primeira metade deste século, a Física foi a grande responsável pela revolução do pensamento humano. Entre os inúmeros avanços teóricos e técnicos responsáveis por esta revolução, está a teoria quântica - A certeza da realização de um evento deu lugar à possibilidade do seu acontecimento. A nova dimensão das relações espaço-tempo e matéria e energia, relativizaram o mecanicismo clássico de Galileu e Newton.
Na mecânica quântica deixou-se de descrever as trajetórias da mecânica newtoniana e passou-se a descrever as funções de onda. Na verdade passou-se a medir a possibilidade da ocorrência de um fenômeno.
Poderíamos dizer que na esfera do infinitamente pequeno, a ciência teve que mergulhar no imprevisível mundo quântico. O princípio da indeterminação de Werner Heisenberg acabou por mudar radicalmente a percepção da natureza e das relações simétricas.
A Teoria da relatividade propôs um modelo que alterou a percepção do cosmos, com a descoberta da curvatura da matéria no espaço, nela Einstein demonstra que toda massa dobra o espaço em torno de si, a disposição da matéria define a estrutura geométrica do espaço-tempo e a sua curvatura. Ele acrescenta a constante tempo ao espaço tridimensional.
Podem o modelo simétrico servir para todas as leis fundamentais da natureza? Existe uma simetria para Princípios físicos que regem os movimentos dos corpos na Terra e também ela se aplica ao movimento dos planetas.
Existe um modelo universal para fenômenos diversos que ocorrem em escalas distintas e sofrem interações diversas ?
Embora até pouco tempo acreditava-se que as leis da física não variavam sob transformações de reflexão, com o aprofundamento do estudo sobre as partículas e seu comportamento num dado campo, como por exemplo, no decaimento beta, ficou provado que há outras relações simétricas possíveis, pois não há equilíbrio entre a matéria e a anti-matéria, levando a crer que nem toda relação reflete a mesma proporção, pode-se falar inclusive em assimetria.
5. A mudança de paradigmas
A ciência como bem observou Thomas Kuhn, trabalha com paradigmas e a cada nova descoberta, esses modelos, ou postulados tem que ser reformulados, confrontados e até descartados. O século XX vinte muitos paradigmas tiveram que ser reformulados. O determinismo cartesiano, o mecanicismo de Galileu e Newton, sofreram abalos importantes, sem no entanto haver uma ruptura radical, uma vez que a mecânica de Newton ainda tem validade, embora os postulados científicos tenham se modificado muito. Neste sentido podemos entender a simetria como pontos de vista distintos Os “diferentes fenômenos” correspondem a diferentes pontos de vista (aspectos distintos) de um único tipo de fenômeno - a Simetria. Assim o Movimento na terra e nos céus (Galileu e Newton), Eletricidade e magnetismo (Faraday e Maxwell), Espaço e tempo (Einstein), A forma (matemática) das Leis físicas, absolutas, são perspectivas simétrica distintas mais que se valem do conceito de simetria para serem formulados.
O conceito de simetria ainda é a base das teorias da Física nuclear. O modelo da simetria de translação, se enquadra tanto para as leis de Newton, como para as do eletromagnetismo de Maxwell (leis da termodinámica), como para as teorias da relatividade restrita e geral propostas por Einstein, na observação de movimentos com velocidades próximas à da luz e os efeitos dos campos gravitacionais, quanto para a mecânica quântica que explica o microcosmo nuclear e a disposição das partículas.
No prefacio da Teoria da Relatividade Especial e Geral, Einstein, A visão dos campos como derivados da mecânica da partícula, conceito de campo ainda era visto como algo auxiliar, de maneira análoga a descrição da elasticidade de um meio material contínuo na mecânica clássica.
“... Tanto mais certo se afigurava porque se estava convencido de que todo campo devia ser considerado como um estado capaz de ser interpretado mecanicamente, o que exigia presença de matéria. Assim se começo a necessidade de admitir em toda parte, também no espaço considerado vazio, a existência de uma matéria, que recebeu o nome de “éter”.
O entendimento completo das leis do eletromagnetismo no século XIX indicava que a resposta era negativa. A possibilidade de que a idéia mais fundamental por traz do Princípio de Relatividade pudesse ser mantida (utilizando-se transformações diferentes das de Galileu) não era explicitamente apreciada pelos físicos do final do século XIX. Por exemplo, seria contra o senso comum supor que o tempo fosse diferente para observadores possuindo movimento relativo. Leis de Newton estão de acordo com o Princípio de Relatividade de Galileu.
6.Tipos de simetria e relações simétricas
O conceito de simetria é amplamente utilizado em diversas áreas da física, simetria de tempo, espacial de paridade, A observação de muitos fenómenos tem como base a noção de simetria.
O uso mais deste conceito está presente no teorema de Noether que faz corresponder cada simetria (aqui chamada de invariança) em Física numa lei de conservação, sendo a Teoria dos Grupos uma dos campos da matemática mais estudadas pelos físicos. A quebra espontânea de simetria nas transformações dos grupos de simetria é muito utlizada nesta ciência com o propósito de explicar ocorrências que podem ser estabelecidas na física de particulas e na cosmologia.
7. simetria e o movimento
Posteriormente, com a teoria da relatividade geral, Einstein mostrou que essa simetria também é válida para os corpos em movimento acelerado. Diferentemente do movimento uniforme, Na descrição da física newtoniana, é necessário que as leis sejam modificadas, ou seja, que se inclua uma força “fictícia” para descrever esse movimento.
Entretanto, Einstein mostrou por meio do princípio da equivalência se modifica, desde que se inclua um campo gravitacional na descrição do movimento, pois, segundo esse princípio, qualquer movimento acelerado pode ser descrito como se fosse a ação de um campo gravitacional.
Entre muitas outras simetrias importantes que existem nas leis da física, talvez uma das mais importantes seja a relacionada com o tempo. Em qualquer instante do tempo, seja no passado distante, nos instantes iniciais do universo ou no futuro longínquo, daqui a dezenas de bilhões de anos, as leis da física não se modificam, ou seja, são simétricas.
8. Simetria e unificação das interações
Na década 1970 foi descobertas relações entre bósons e férmions possibilitado pela Teoria de Cordas. Em 1971, o físico francês Jean Loup Gervais e o japonês Bunji Sakita, descobriram que a usual ação linear bosônica possui uma simetria – logo conhecida como supersimetria que envolve energias da ordem de 1020 GeV (ou dimensões da ordem de 10-34 cm)] - que converte bósons em férmions.
Em 1973, trabalhos independentes de Volkov e Akulov, formularam a Teoria da Supersimetria (TSS). Segundo essa teoria, cada partícula possuirá uma par com propriedades idênticas, exceto no valor de seu spin. , que vale o spin da partícula correspondente, subtraído de ½. Assim, para as partículas mediadoras das interações (gravitacional: gráviton) e da matéria (quarks/ léptons ).
Até aqui, vimos a unificação entre as interações eletromagnética, fraca e forte. Contudo, falta a unificação delas com a gravitacional. As primeiras pesquisas no sentido dessa unificação ocorreram, em 1974, em trabalhos independentes realizados sobretudo por Julius Wess (n.1934) e Bruno Zumino onde postulam que é possível ir de uma simetria global para uma simetria local, além de essa passagem mudar o spin da partícula, ela desloca, também, as partículas no espaço. Essa simetria é conhecida como supergravidade. Nos anos seguintes, redescobriram a relação simétrica de Wess-Zumino-Salam-Strathdee, de 1974. Essa Teoria da Super-gravidade (TSG) permitem tese unificar as diversas teorias de campo, embora, até o presente momento essas partículas que permitiriam essa unificação não foram detectadas, a comunidade dos físicos esperam resolver esse problema quando puderem fazer experimentos com o acelerador de partículas que começa a funcionar este ano na Europa entre a Suíça e a França, esse grande acelerador irá reproduzir o comportamento dessas partículas que poderão ou não confirmar as diversas hipóteses em questão.
9. Considerações finais
Ao concluir este sucinto artigo sobre a simetria e a unificação das partículas elementares, é interessante realçar que, apesar do poder de síntese destas teorias de unificação (TSW, TGU e TSG), elas apresentam uma grande dificuldade, já que são internamente não-renormalizáveis. Contudo, existe um outro tipo de teoria unificada em que essa “anomalia” é eliminada, que é a Teoria das Cordas . Vale ainda observar que a renormalização (Robert Seber (1909-1997) é uma concepção pela qual os infinitos de uma Teoria de Campo são retidos em seus parâmetros livres, de modo que resultam valores finitos nos cálculos, em todas as ordens de perturbação.
BIBLIOGRAFIA
EINSTEIN , Albert. A teoria da Relatividade Especial Geral. Editora da Unicamp. São Paulo. 1991
________ ;Física . 3ª edição. Rio de Janeiro. Zahar, 1976.
Curso de física da Berkeley – Eletricidade e Magnetismo. São Paulo: Edgar
Blucher, 1973, Beiser, A. Conceitos de Física Moderna. São Paulo: EDUSP/Polígano, 1969.
MAXWELL, James Clerk. Escritos Científicos, Edgar Blucher, 1977, São Paulo, EDUSP/1976.
FEYNNAN, Richard. The Character of Physical Law.
GALILEU, Galilei: Duas Novas Ciências.
PETERSON, Mark A. Galileo’s Discovery of Scaling Laws.Physics
Department, Mount Holyoke College, South Hadley MA 01075, November 5, 2007
TIPLER, P.A Física. Rio de Janeiro: Guanabara Dois. 1978, 2volume.
KUHN, Thomas S. A Estrutura das Revoluções Científicas. Editora Perspectiva. São Paulo 1997.
WITTGENSTEIN, Ludwig. Tractatus Logico Philosophicus. Biblioteca Universitaria.EDUSP. São Paulo, 1978;
1. Galileu e o Método Científico
Galileu Galilei (1564-1642) foi o fundador da ciência moderna, deu grande contribuição ao método científico quando estabeleceu parâmetros para a feitura da ciência. A valorização da observação dos fenômenos e a experimentação para a posterior verificação ainda hoje é condição sine qua non para se fazer ciência. Outra contribuição importante de Galileu é a estabelecer critérios e escalas para mensurar dado experimento como bem observa Mark A. Peterson :
“ (...) a sua obra Duas Novas Ciências começa com o tema do escalonamento, as observações de Galileu sobre o dimensionamento, em geral, são engenhosos e elegantes(...). Essas idéias são fundamentais na física, e são ainda introduzidas na parte introdutória dos livros de Física sob o título de analise dimensional (...) “
Galileu irá acreditava ser a Física a geometria e a escala de invariância os teoremas da matemática.
2. Definindo simetria
A simetria é um dos conceitos mais fundamentais das ciências ela tem aplicações práticas, seja na arquitetura, na música, na poesia,e sobretudo na natureza, é como se fosse um espelho que reflete exatamente nas mesmas proporções um objeto, simetria é na verdade um conceito que está muito ligada a ordem e a um certo conceito de absoluto já que nada poderia ser concebido além das proporções simétricas. Esta regularidade permite a invariabilidade das leis que presidem os movimentos dos corpos.
Em linguagem matemática, simetria é uma operação geométrica que deixa um objeto inalterado.
Nas artes, nas ciências, sobretudo na matemática euclidiana, como em Galileu percebe-se um desejo de interpretar o movimento, como sendo algo que se desdobra numa escala.
É interessante notar que no segundo dia do Discorsi. Galileu discorre sobre a impossibilidade de que na natureza aja simetria sob transformação de escala, no entanto nem toda simetria se manifestam diretamente na natureza.
Ou seja: as transformações de Galileu que são demonstradas como:
X´ = x - Vt ;
T ’ = t
A
22de maneira mais qualificada da seguinte forma:
3.Simetria e referencial inercial
Vale citar o seguinte trecho do livro “The Character of Physical Law” de Richard Feynman:
“Galileo discovered a great principle called the principle of inertia, which is this: that if an object has nothing acting on it and is going along at a certain velocity in a straight line it will go at the same velocity in exactly the same straight line for ever...”
Galileu descobriu que não existe um padrão absoluto de repouso ou de movimento com velocidade constante (princípio de invariância sob uma mudança de referencial inercial.
Já formulação completa das leis físicas do movimento foi apresentada por Isaac Newton, em 1687, em Mathematical Principles of Natural Philosophy. Essas leis válidas para quaisquer observadores possuindo movimento relativo com velocidade constante, esses observadores utilizam referenciais inerciais.
4.Outras simetrias
Na primeira metade deste século, a Física foi a grande responsável pela revolução do pensamento humano. Entre os inúmeros avanços teóricos e técnicos responsáveis por esta revolução, está a teoria quântica - A certeza da realização de um evento deu lugar à possibilidade do seu acontecimento. A nova dimensão das relações espaço-tempo e matéria e energia, relativizaram o mecanicismo clássico de Galileu e Newton.
Na mecânica quântica deixou-se de descrever as trajetórias da mecânica newtoniana e passou-se a descrever as funções de onda. Na verdade passou-se a medir a possibilidade da ocorrência de um fenômeno.
Poderíamos dizer que na esfera do infinitamente pequeno, a ciência teve que mergulhar no imprevisível mundo quântico. O princípio da indeterminação de Werner Heisenberg acabou por mudar radicalmente a percepção da natureza e das relações simétricas.
A Teoria da relatividade propôs um modelo que alterou a percepção do cosmos, com a descoberta da curvatura da matéria no espaço, nela Einstein demonstra que toda massa dobra o espaço em torno de si, a disposição da matéria define a estrutura geométrica do espaço-tempo e a sua curvatura. Ele acrescenta a constante tempo ao espaço tridimensional.
Podem o modelo simétrico servir para todas as leis fundamentais da natureza? Existe uma simetria para Princípios físicos que regem os movimentos dos corpos na Terra e também ela se aplica ao movimento dos planetas.
Existe um modelo universal para fenômenos diversos que ocorrem em escalas distintas e sofrem interações diversas ?
Embora até pouco tempo acreditava-se que as leis da física não variavam sob transformações de reflexão, com o aprofundamento do estudo sobre as partículas e seu comportamento num dado campo, como por exemplo, no decaimento beta, ficou provado que há outras relações simétricas possíveis, pois não há equilíbrio entre a matéria e a anti-matéria, levando a crer que nem toda relação reflete a mesma proporção, pode-se falar inclusive em assimetria.
5. A mudança de paradigmas
A ciência como bem observou Thomas Kuhn, trabalha com paradigmas e a cada nova descoberta, esses modelos, ou postulados tem que ser reformulados, confrontados e até descartados. O século XX vinte muitos paradigmas tiveram que ser reformulados. O determinismo cartesiano, o mecanicismo de Galileu e Newton, sofreram abalos importantes, sem no entanto haver uma ruptura radical, uma vez que a mecânica de Newton ainda tem validade, embora os postulados científicos tenham se modificado muito. Neste sentido podemos entender a simetria como pontos de vista distintos Os “diferentes fenômenos” correspondem a diferentes pontos de vista (aspectos distintos) de um único tipo de fenômeno - a Simetria. Assim o Movimento na terra e nos céus (Galileu e Newton), Eletricidade e magnetismo (Faraday e Maxwell), Espaço e tempo (Einstein), A forma (matemática) das Leis físicas, absolutas, são perspectivas simétrica distintas mais que se valem do conceito de simetria para serem formulados.
O conceito de simetria ainda é a base das teorias da Física nuclear. O modelo da simetria de translação, se enquadra tanto para as leis de Newton, como para as do eletromagnetismo de Maxwell (leis da termodinámica), como para as teorias da relatividade restrita e geral propostas por Einstein, na observação de movimentos com velocidades próximas à da luz e os efeitos dos campos gravitacionais, quanto para a mecânica quântica que explica o microcosmo nuclear e a disposição das partículas.
No prefacio da Teoria da Relatividade Especial e Geral, Einstein, A visão dos campos como derivados da mecânica da partícula, conceito de campo ainda era visto como algo auxiliar, de maneira análoga a descrição da elasticidade de um meio material contínuo na mecânica clássica.
“... Tanto mais certo se afigurava porque se estava convencido de que todo campo devia ser considerado como um estado capaz de ser interpretado mecanicamente, o que exigia presença de matéria. Assim se começo a necessidade de admitir em toda parte, também no espaço considerado vazio, a existência de uma matéria, que recebeu o nome de “éter”.
O entendimento completo das leis do eletromagnetismo no século XIX indicava que a resposta era negativa. A possibilidade de que a idéia mais fundamental por traz do Princípio de Relatividade pudesse ser mantida (utilizando-se transformações diferentes das de Galileu) não era explicitamente apreciada pelos físicos do final do século XIX. Por exemplo, seria contra o senso comum supor que o tempo fosse diferente para observadores possuindo movimento relativo. Leis de Newton estão de acordo com o Princípio de Relatividade de Galileu.
6.Tipos de simetria e relações simétricas
O conceito de simetria é amplamente utilizado em diversas áreas da física, simetria de tempo, espacial de paridade, A observação de muitos fenómenos tem como base a noção de simetria.
O uso mais deste conceito está presente no teorema de Noether que faz corresponder cada simetria (aqui chamada de invariança) em Física numa lei de conservação, sendo a Teoria dos Grupos uma dos campos da matemática mais estudadas pelos físicos. A quebra espontânea de simetria nas transformações dos grupos de simetria é muito utlizada nesta ciência com o propósito de explicar ocorrências que podem ser estabelecidas na física de particulas e na cosmologia.
7. simetria e o movimento
Posteriormente, com a teoria da relatividade geral, Einstein mostrou que essa simetria também é válida para os corpos em movimento acelerado. Diferentemente do movimento uniforme, Na descrição da física newtoniana, é necessário que as leis sejam modificadas, ou seja, que se inclua uma força “fictícia” para descrever esse movimento.
Entretanto, Einstein mostrou por meio do princípio da equivalência se modifica, desde que se inclua um campo gravitacional na descrição do movimento, pois, segundo esse princípio, qualquer movimento acelerado pode ser descrito como se fosse a ação de um campo gravitacional.
Entre muitas outras simetrias importantes que existem nas leis da física, talvez uma das mais importantes seja a relacionada com o tempo. Em qualquer instante do tempo, seja no passado distante, nos instantes iniciais do universo ou no futuro longínquo, daqui a dezenas de bilhões de anos, as leis da física não se modificam, ou seja, são simétricas.
8. Simetria e unificação das interações
Na década 1970 foi descobertas relações entre bósons e férmions possibilitado pela Teoria de Cordas. Em 1971, o físico francês Jean Loup Gervais e o japonês Bunji Sakita, descobriram que a usual ação linear bosônica possui uma simetria – logo conhecida como supersimetria que envolve energias da ordem de 1020 GeV (ou dimensões da ordem de 10-34 cm)] - que converte bósons em férmions.
Em 1973, trabalhos independentes de Volkov e Akulov, formularam a Teoria da Supersimetria (TSS). Segundo essa teoria, cada partícula possuirá uma par com propriedades idênticas, exceto no valor de seu spin. , que vale o spin da partícula correspondente, subtraído de ½. Assim, para as partículas mediadoras das interações (gravitacional: gráviton) e da matéria (quarks/ léptons ).
Até aqui, vimos a unificação entre as interações eletromagnética, fraca e forte. Contudo, falta a unificação delas com a gravitacional. As primeiras pesquisas no sentido dessa unificação ocorreram, em 1974, em trabalhos independentes realizados sobretudo por Julius Wess (n.1934) e Bruno Zumino onde postulam que é possível ir de uma simetria global para uma simetria local, além de essa passagem mudar o spin da partícula, ela desloca, também, as partículas no espaço. Essa simetria é conhecida como supergravidade. Nos anos seguintes, redescobriram a relação simétrica de Wess-Zumino-Salam-Strathdee, de 1974. Essa Teoria da Super-gravidade (TSG) permitem tese unificar as diversas teorias de campo, embora, até o presente momento essas partículas que permitiriam essa unificação não foram detectadas, a comunidade dos físicos esperam resolver esse problema quando puderem fazer experimentos com o acelerador de partículas que começa a funcionar este ano na Europa entre a Suíça e a França, esse grande acelerador irá reproduzir o comportamento dessas partículas que poderão ou não confirmar as diversas hipóteses em questão.
9. Considerações finais
Ao concluir este sucinto artigo sobre a simetria e a unificação das partículas elementares, é interessante realçar que, apesar do poder de síntese destas teorias de unificação (TSW, TGU e TSG), elas apresentam uma grande dificuldade, já que são internamente não-renormalizáveis. Contudo, existe um outro tipo de teoria unificada em que essa “anomalia” é eliminada, que é a Teoria das Cordas . Vale ainda observar que a renormalização (Robert Seber (1909-1997) é uma concepção pela qual os infinitos de uma Teoria de Campo são retidos em seus parâmetros livres, de modo que resultam valores finitos nos cálculos, em todas as ordens de perturbação.
BIBLIOGRAFIA
EINSTEIN , Albert. A teoria da Relatividade Especial Geral. Editora da Unicamp. São Paulo. 1991
________ ;Física . 3ª edição. Rio de Janeiro. Zahar, 1976.
Curso de física da Berkeley – Eletricidade e Magnetismo. São Paulo: Edgar
Blucher, 1973, Beiser, A. Conceitos de Física Moderna. São Paulo: EDUSP/Polígano, 1969.
MAXWELL, James Clerk. Escritos Científicos, Edgar Blucher, 1977, São Paulo, EDUSP/1976.
FEYNNAN, Richard. The Character of Physical Law.
GALILEU, Galilei: Duas Novas Ciências.
PETERSON, Mark A. Galileo’s Discovery of Scaling Laws.Physics
Department, Mount Holyoke College, South Hadley MA 01075, November 5, 2007
TIPLER, P.A Física. Rio de Janeiro: Guanabara Dois. 1978, 2volume.
KUHN, Thomas S. A Estrutura das Revoluções Científicas. Editora Perspectiva. São Paulo 1997.
WITTGENSTEIN, Ludwig. Tractatus Logico Philosophicus. Biblioteca Universitaria.EDUSP. São Paulo, 1978;